an investigation of radial basis function approximation methods with application in dynamic investment model
نویسندگان
چکیده
the present study is an attempt to investigate some features of radial basis functions (rbfs) approximation methods related to variational problems. thereby authors applied some properties of rbfs to develop a direct method which reduces constrained variational problem to a static optimization problem. to assess the applicability and effectiveness of the method, some examples are examined. dynamic investment problem with free endpoint in unbounded domain is solved, accordingly the effectiveness of the proposed method is verified. to improve the accuracy and stability of the method we have used various shape parameter strategies with equally spaced and scattered centers. finally, two new shape parameter strategies are proposed and then it is shown that the proposed strategies increase the accuracy and stability of the method.
منابع مشابه
Integrated multiquadric radial basis function approximation methods
Promising numerical results using once and twice integrated radial basis functions have been recently presented. In this work we investigate the integrated radial basis function (IRBF) concept in greater detail, connect to the existing RBF theory, and make conjectures about the properties of IRBF approximation methods. The IRBF methods are used to solve PDEs. c © 2006 Elsevier Science Ltd. All ...
متن کاملan application of equilibrium model for crude oil tanker ships insurance futures in iran
با توجه به تحریم های بین المملی علیه صنعت بیمه ایران امکان استفاده از بازارهای بین المملی بیمه ای برای نفتکش های ایرانی وجود ندارد. از طرفی از آنجایی که یکی از نوآوری های اخیر استفاده از بازارهای مالی به منظور ریسک های فاجعه آمیز می باشد. از اینرو در این پایان نامه سعی شده است با استفاده از این نوآوری ها با طراحی اوراق اختیارات راهی نو جهت بیمه گردن نفت کش های ایرانی ارائه نمود. از آنجایی که بر...
APPROXIMATION BY RADIAL BASIS FUNCTION NETWORKS Application to Option Pricing
We propose a method of function approximation by radial basis function networks. We will demonstrate that this approximation method can be improved by a pre-treatment of data based on a linear model. This approximation method will be applied to option pricing. This choice justifies itself through the known nonlinear nature of the behavior of options price and through the effective contribution ...
متن کاملApproximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملApproximation of nonlinear systems with radial basis function neural networks
A technique for approximating a continuous function of n variables with a radial basis function (RBF) neural network is presented. The method uses an n-dimensional raised-cosine type of RBF that is smooth, yet has compact support. The RBF network coefficients are low-order polynomial functions of the input. A simple computational procedure is presented which significantly reduces the network tr...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
iranian journal of science and technology (sciences)ISSN 1028-6276
دوره 39
شماره 2 2015
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023